

Safety First!Select the Right Gloves for the Research

Advantages

 Suitable to handle biological materials and water-based materials

Disadvantages

- Poor for oils, greases and organic solvents
- Can trigger latex allergies

Advantages

 Good for oils, greases, acids, bases and aliphatic chemicals

Disadvantages

 Poor for aromatics, ketones, esters and chlorinated solvents

Butyl rubber

Advantages

- Good for peroxide, aldehydes, ketones, esters, polar organic solvents
- Good for strong acids and bases

Disadvantages

 Poor for aliphatic aromatics and halogenated solvents

Neoprene

Advantages

 Good for oxidizing acids, bases, alcohols, oils, phenol and glycol ethers

Disadvantages

 Poor for aromatic and halogenated solvents

Silver Shield®

Advantages

 Good for a wide range of solvents such as aromatics, chlorinated, ketones, alcohols, esters, aliphatic solvents, acids and bases

Disadvantages

Poor dexterity, fit and grip

Remarks

- 1.Gloves should be worn solely to protect against chemical splashes. If there is any chemical exposure, remove the gloves immediately and replace them with a new pair
- 2. Consider using double gloves. The chemical protection lacking in one type of glove may be offered by the other.